
Chapter 4

[103]

GUI Tier
Here is the front end code, which simply populates a repeater with all of the
customer records:

 <asp:Repeater ID="rptCustomers" runat="server"
 DataKeyField="CustomerID" >
 <HeaderTemplate>

 <tr>
 <th>
 ID
 </th>
 <th>
 Name
 </th>

 <th>
 Edit
 </th>
 <th>
 Delete
 </th>
 </tr>

 </HeaderTemplate>
 <ItemTemplate>

 <tr>
 <td>
 <%#Eval("CustomerID")%>
 </td>
 <td>
 <%#Eval("Name")%>
 </td>

 <td align="right">
 <asp:Button ID="btnEdit" runat="server"
 Text="Edit"
 CommandArgument='
 <%#Eval("ProductID")%>'
 CommandName="edit"/>
 </td>

 <td align="right">

N-Tier Architecture

[104]

 <asp:Button ID="btnDelete" runat="server"
 Text="Delete"
 CommandArgument='
 <%#Eval("ProductID")%>'
 CommandName="delete"/>
 </td>

 </tr>

 </ItemTemplate>

 </asp:Repeater>

This is a simple repeater control which gets populated with a list of Customer objects
from the database, using the following code in the CustomerList.aspx.cs file:

private void FillCustomers()
 {
 CustomerCollection list=new CustomerCollection();
 rptCustomers.DataSource = list.FindAll();
 rptCustomers.DataBind();
 }

The CustomerCollection class, which is defined in the next section, simply
returns a collection of Customer objects. So the GUI tier is completely independent
of the Data tier, and talks to the BL tier via a one-way reference (we have added a
reference to the BL in the GUI tier, and not the other way round). So our system is
loosely-coupled.

We can bind the Customer object properties in the ASPX using a declarative syntax,
and if we need to edit a particular customer, we just need to directly use the Customer
object's properties in the Editcustomer form, as in:

txtCustomerEmail.text = customer.Email;

When this property is called, the Load() method defined in the property will check if
the Customer object is fully loaded or not; if not, it will load all of the properties. So
this is called load on demand— the core principle of the lazy loading design pattern.

